DOE-NETL's Mercury Control Technology R&D Program for Coal-Fired Power Plants

AWMA 97th Annual
Conference & Exhibition
Mercury and Power Generation
Panel

June 23, 2003 Indianapolis, IN

Thomas J. Feeley, III
thomas.feeley@netl.doe.gov
National Energy Technology Laboratory

Over a Decade of DOE/NETL Hg R&D

DOE/NETL Funding for Hg R&D

Over \$52.5 million spent on mercury R&D over the past seven years!

DOE-NETL Mercury Control Program *R&D Goals*

Cost

Have control technologies ready for commercial demonstration:

- Near-term, reduce emissions 50-70%
 - By 2005 for bituminous coal
 - By 2007 for low-rank coal
- Long-term, reduce emissions 90% by 2010
- Cost 25-50% less than current estimates

2000

Year ----

Baseline Costs: \$50,000 - \$70,000 / Ib Hg Removed

DOE/NETL Mercury Control Technology

Observations From Phase I Field Tests

Hg capture performance

- ACI works, however...
 - Effectiveness of ACI depends on coal type and plant configuration
- Wet scrubber size and chemistry affect re-emission

Uncertainties remain

- Performance over longer periods of operation
- Capture effectiveness with low-rank coals and coal blends
- Sorbent feed rate and costs
- FGD Hg reduction/re-emission
- By-product use and disposal
- Need for fabric filter for units equipped with ESP
- Balance-of-plant impacts

DOE/NETL New Phase II, Round 1 Mercury Control Field Test Projects

- Eight new projects selected in September 2003
- Focus on longer-term, largescale field testing of sorbent injection and mercury oxidation technologies
- Broad range of coal-rank and air pollution control device configurations

DOE/NETL New Phase II, Round 1 Mercury Control Field Test Projects

Project Title	Lead Company	Preliminary Test Schedule*	Host Utility	Test Location	Coal Rank	PM	FGD
Evaluation of Sorbent Injection for Mercury Control	ADA-ES	3/04 - 6/04	Sunflower Electric	Holcomb	PRB/Bit. Blend	FF	SDA
		8/05 - 11/05	Ontario Power	Nanticoke	PRB/Bit. Blend	ESP	
		8/04 - 11/04	AmerenUE	Meramec	PRB	ESP	
		3/05 - 6/05	AEP	Conesville	Bit.	ESP	Wet FGD
Amended Silicates for Mercury Control	Amended Silicates	9/04 - 10/04	Cinergy	Miami Fort 6	Bit.	ESP	
Sorbent Injection for Small ESP Mercury Control	URS Group	3/04 & 9/04 - 10/04	Southern	Yates 1	Bit.	ESP	Wet FGD
			Southern	Yates 2	Bit.	ESP w/ NH ₃ /SO ₃	
Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems	URS Group	6/04 - 7/05	TXU	Monticello 3	TX Lignite	ESP	Wet FGD
		2/05 - 3/06	Duke	Marshall	Bit.	ESP	
Evaluation of MerCAP for Power Plant Mercury Control	URS Group	2/04 - 8/04	Great River Energy	Stanton 10	ND Lignite	FF	SDA
		1/05 - 6/05	Southern	Yates 1	Bit.	ESP	Wet FGD
Enhancing Carbon Reactivity in Mercury Control in Lignite-Fired Systems	UNDEERC	4/04 - 6/04	Basin Electric	Leland Olds 1	ND Lignite	ESP	
		9/04 - 10/04	Great River Energy	Stanton 10	ND Lignite	FF	SDA
		4/05 - 6/05	Basin Electric	Antelope Valley 1	ND Lignite	FF	SDA
		4/04 - 5/04	Great River Energy	Stanton 1	ND Lignite	ESP	
Mercury Oxidation Upstream of an ESP and Wet FGD	UNDEERC	6/05 - 8/05	Minnkota Power	Milton R. Young 2	ND Lignite	ESP	Wet FGD
		8/05 - 9/05	TXU	Monticello 3	TX Lignite	ESP	Wet FGD
Advanced Utility Mercury-Sorbent Field-Testing Program	Sorbent Technolgies	1/05 - 4/05	Duke	Buck	Bit.	Hot ESP	
		6/04 - 9/04	Detroit Edison	St. Clair	Bit./PRB blend	ESP	

^{*} These are preliminary test schedules subject to change based on plant availability.

DOE/NETL New Phase II, Round 2 Mercury Control Field Test Projects

- Proposals due by end of April 2004
- Focus on technologies for plants that burn low-rank coal
 - -Powder River Basin
 - -Texas Lignite
 - -Coal blends

ToxeconTM Retrofit for Mercury and Multi- Pollutant Control – CCPI Demonstration Project

- Multi-pollutant control with PRB coal
 - -90% Hg reduction
 - -70% SO₂ reduction
 - -30% NOx reduction
- Hg recovery from sorbent
- Hg CEM performance

We Energies Presque Isle
Power Plant

Challenges to Increased CUB Utilization

- Future air pollution regulations,
 e.g., Clear Skies, Mercury MACT
 - Increase volume of coal utilization by-products
 - Change characteristics (i.e., quality) of by-products

- Future solid waste regulations under RCRA?
 - Limit use applications
 - Regulate coal utilization byproducts as hazardous
- Public perception

Hazardous Waste Designation of All By-products
Could Cost \$11 Billion / Year

NETL External Projects Addressing the Environmental Characterization of CUBs

- Fate of mercury from control technology field demonstrations
 - ADA-ES and Reaction Engineering
 - B&W and McDermott Technology
- Trace element leaching from CUB disposal and utilization applications
 - CONSOL Energy
 - University of North Dakota Energy & Environmental Research Center (UNDEERC)
 - Electric Power Research Institute (EPRI)
- Fate of mercury in synthetic gypsum used for wallboard production
 - US Gypsum

DOE/NETL Hg Control Technology R&D Future Plans – 5-Year Horizon

Fiscal	Major Activities
Year	
2005	 Continue Phase II field testing of 50%-70% Hg control technologies Continue byproduct characterization Complete pilot-scale testing of +90% control options Initiate evaluation of pre-combustion Hg control
2006	Continue Phase II field testing Continue byproducts characterization Initiate Phase III field testing of +90% control technologies
2007	Complete Phase II field testing Continue byproducts characterization Continue Phase III field testing
2008	Continue byproducts characterization Continue Phase III field testing
2009	Continue byproducts characterization Continue Phase III field testing